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Abstract-Buckling couples are determined from theoretical couple-displacement curves obtained by a
plastic solution in terms of three-dimensional stress and strain satisfying end conditions. The plastic
deformation is analyzed by describing the material behavior as rigid, hardening-plastic and by using the
virtual work method for large nonlinear displacements. Deformation theory is employed to account for the
dependency of stress on strain and hardening is considered to be linear, i.e. a constant modulus of plasticity
is used. The theoretical results show good agreement with data of tests conducted by the authors on pipes.

The work indicates that plastic buckling loads can be predicted accurately in analogy with elastic
stability analysis, i.e. by accounting for changes in shape only using a linear stress-strain relationship for
the rigid-plastic material in conjunction with nonlinear strain-displacement relationships.

NOMENCLATURE
D and rm mean diameter and mean radius, respectively of plane pipes

T thickness of pipe
I length of plane pipe

O'y average experimental yield strength of plane pipe of tee in tension
CE stable experimental limit couple of plane pipe

BCE experimental, plastic buckling couple of plane pipe
FCE experimental couple at first yield of a plane pipe
0', E uniaxial stress, strain respectively
O'y yield strength in tension
Eo modulus of plasticity

Eu, Eu strain energy, complementary strain energy per unit volume for uniaxial condition
x, y, z Cartesian coordinates
r, 1/1, z general cylindrical coordinates

0'", O'</></>, 0'" stress in cylindrical coordinates
Urz, U'r4>' Uq,z

E", E~, E" strain in cylindrical coordinates
En,Erq"Eq,z

S'" s~, s" deviatoric stress in cylindrical coordinates
Srz, S,</>, Sl/J.z

S" E, equivalent or effective stress, strain
E, E strain energy, complementary strain energy per unit volume
IlU virtual change in total strain energy
IlW virtual work

V undeformed volume of pipe
u, v, w displacements along r, 1/1, z-direction
A k, C. undetermined coefficients

U, j, k, m, n, p, q summation indices
r' radius of deformed cross section of pipe
x' projection of r' onto x-axis
uy series expansion for O'y

BM bending moment of pipe
M moment of applied couple at end

ROo R ouier and inner radius of plane pipe
5ij integrated coefficients of uy

BCT theoretical plastic buckling couple of plane pipe
BCt adjusted BCT

Rm mean radius of plane pipe used in appendix.

INTRODUCTION

A number of papers have dealt with elastic and/or plastic deformation and consequent buckling
of pipes under bending. An elastic buckling solution was attempted in [1] by using a modified
Donnell large deflection theory, i.e. a modified membrane shell theory, and by accounting for a
change in shape of the cross section in the axial direction. Buckling was attributed to ovaling of
the cross section and was predicted by setting the second variation of the potential energy to
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zero. In [2] a number of pipes were deformed plastically under pipe-whip loading and a very
approximate analysis of the results was attempted, using a simple moment-curvature relation­
ship and a power law for the elastic-plastic stress-strain relationship where strain-hardening is
represented by a power function of strain. A flattening of the cross section was not considered
and the buckling moment was found by setting the derivative of the bending moment with
respect to the slope of the longitudinal axis of the pipe to zero. A change in shape of the
cross section was considered in a stable plastic solution of bending of thin-walled tubes under
the assumption that this change was constant over the length of the pipe [3], i.e. without
accounting for a variation in this change in the longitudinal direction of the tube. Shear strain
and stresses were disregarded and the results were expressed by a moment-curvature relation­
ship, based on a linear strain-displacement relationship and on a deformation theory type
stress-strain law. Elastic-plastic stress-strain relationships were the same as in [2]. The same
author proceeds in [4] to recover a buckling solution by equating the change in energy during
buckling to the work done by the bending moment on buckling, i.e. by using a Timoshenko-type
approach to this problem. Pre- and post-buckling behavior of infinitely long pipes exposed to
longitudinal bending moments and external pressures were analysed in [5] by shell theory. The
elastic-plastic stress-strain relationship was described using a power law and non-linear shell
equations were employed to account for compatibility of deformation and equilibrium. A
change in shape of the cross section was accounted for in the longitudinal and circumferential
direction. Stability conditions were obtained by solving by trial and error a characteristic
equation and selecting the smallest value of longitudinal stress corresponding to a certain
hydrostatic pressure as the buckling stress. Post-buckling pressure-deflection curves were
represented for constant longitudinal strain using numerical solutions of non-linear differential
equations.

Using the principle of least work, elastic and plastic deformation was taken into account to
find the ultimate moment of round tubing in [6]. End conditions and the effect of length were
neglected, since a tube of unit length was analyzed, and shear on the middle surface of the shell
was not considered. Length is one of the significant parameters in stability analysis. Because of
these simplifications, the solution in [6] gives a lower bond to the experimental data.

This work appears then to be the first attempt to obtain a plastic solution for bent pipes
using a fully three-dimensional stress and strain field, where variations in changes in cro,.ss
sections are accounted for throughout the length of the pipe and boundary conditions are
considered for all stresses and strains. In order to substantiate the solution experimentally, tests
were conducted using the apparatus shown in Fig. I. Test procedures are described in [7].

A DEFORMATION THEORY FOR RIGID PLASTIC LINEARLY HARDENING
CYLINDRICAL SHELLS

In order to analyze the plastic deformation of pipes exposed to couples at the end, the
following constitutive relationships are developed.

The experimental load-strain curve shown in Fig. 2 suggested that the material can be
treated as rigid-plastic with linear hardening as indicated by results from a tensile test in Fig. 3
and the uniaxial stress-strain relationship can be approximated by

(J' = (J'y + Eof (1)

where (J' and f represent uniaxial stress and strain respectively and in analogy with elasticity Eo

is the modulus of plasticity. Equation (1) falls into the category of deformation theory since
stress is directly related to strain and not to strain increments. The deformation theory is
inaccurate when neutral loading occurs and/or the ratios of principle stress change
significantly [8, 9]. Equation (1) and its generalization to multiaxial states of stress is maintained,
since for the problem considered significant changes in the principle stress ratios are not
expected and neutral loading is not taking place, but mainly since any more complicated
plasticity theory renders the antisymmetric, plastic deformation due to bending of a pipe
(representing a cylinderical shell) hopelessly complicated.

In using (1) and its generalization it is possible to employ the elastic analogue for the plastic
analysis, which will be formulated under the following assumptions:
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(i) The material obeys condition (1).
(ii) The changes in principle stress ratios are negligible.
(iii) Loads increase monotonically, i.e. no unloading or neutral loading takes place.
(iv) The displacements and rotations are large.

Fig. I. Experimental set-up to bend pipes.

D/T~ 30 • .r/0-6.1
D· 2·34 in

T· 0.078 intr, . 45.370 psi

• C£· 18,000 in-lb

CL· 19,400 in·lb'* BC E • 22,200 in-Ib
o FeE. 14,900 in.lb

DIAL GAGE
• - I and 3

L-lL----'-------'--L-c",.O=--L-J---L'-'--2L.O--'---'-----'-----'---'----'----'----'

DISPLACEMENT, inch

Fig. 2. Experimental load-displacement curve of pipe P6.
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Fig. 3. Typical uniaxial load-strain curve for pipe material.

(2)

(v) Stains are negligible in comparison with unity and consequently the effect of changes in both
orientation and magnitude of areas on stress are disregarded [8].

Considering the insert in Fig. 3 it can be seen that

a€ = (' a d€ +f" € da.Jo uy

Denoting

Eu=fE a dE, Eu= fer € da
u cry

it follows from a total arbitrary variation of (2) that

(a;u _a) s€ + (a{;; - € ) Sa = 0

(3)

(4)

and
aEu

a =a;-'
aEu

€ =a;;' (5)

The multiaxial state of stress (am aoj><ln am am a,oj>, aoj>z) and strain (€m €#. €m €m €,oj>. €oj>z)

shown for z, tP, r cylindrical coordinates in Fig. 4 has to be exposed to the plastic in­
compressibility condition

z, w

(Tzz OR E Zl
I

/ \
Fig. 4. Stress and strain components used in analysis.
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Err + E4>4> + Ezz = 0

and will be restricted for shells by

CTrr=O.

647

(6)

(7)

Since in view of (6) plastic strain is independent of hydrostatic pressure; the plastic defor­
mation is governed by deviatoric stress [8] which considering (7) can be expressed as

(8)

In order to generalize (1)-(5) CTE in (2) may be replaced by

(9)

where in view of (7) and (8)

(10)

Ee is chosen to satisfy (9), i.e. in view of (6)

Se and Ee are so called equivalent or effective stress and strain respectively [8, 9].
In accordance with von Mises[lO] the material undergoes first yield when

Se = CTy

(11)

(12)

and it will be assumed that for multiaxial states of stress and strain the relationship (1) is valid
in the form

Se = CTy +EOEe or
Se - CTy

Ee=~' (13)

Thus, multiaxial results can be correlated with uniaxial results using (13). This means, for
example that multiaxial results expressed in terms of Se and Ee should follow the uniaxial CT vs E

curve shown in Fig. 3. Replacing CT and E by Se and Ee respectively in (3), it follows considering
(13) that for the multiaxial state of stress

(EO I
E = Jo se dE, = CTyEe +2EoE/, (14)

Using the elastic analogy, E is the strain energy or dissipative potential per unit volume and
E is the complementary of it as shown in the insert of Fig. 3.

The multiaxial stress-strain relationships can be found in analogy with (5). Thus, for
example

aE aEe 2 (CTY )
Szz =-a-a =-3 -+Eo Ezz

Ee Ezz Ee

and considering the same expression for St/HI> and (8)

2 (CTY )CTzz = 3 ~+Eo (2Ezz +Et/HI», etc.

(15)

(16)
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THE METHOD OF VIRTUAL WORK FOR LARGE DISPLACEMENTS

The method simply postulates [11] that the change in total strain energy due to virtual
displacements equals the work done by the applied forces on the virtual displacement. Thus,
using 8 for virtual changes as well as for variations

8U=8W

where in view of (14)

8U= {OEdV

and 8W is the virtual work. Considering (14) it follows that

since E depends on strain only. In view of (15) this can be rewritten as

The last equality is a consequence of (6) and (8). Thus 8U in (17) can be expressed as

(17)

(18)

(19)

(20)

(21)

The arbitrary variations of strain 8Ew etc. can be expressed in terms of virtual displacements.
Using u, v, w for displacements in the radial, tangential and axial direction as shwon in Fig. 4
the strain-large displacement relationships [11] can be expressed in cylindrical coordinates as

E =1 (av _E.+1 au) _1 (aw aw) +1 (~av) +~ av
rt/> 2 ar r r afjJ r ar afjJ r afjJ ar r ar

+1 au au _E. au
r ar afjJ r ar

_E. au +~ avo
r az r az

(22a)

(22b)

(22c)

(22d)

(22e)

(220

It is shown in [11] that in expressing the 8Ew Et/>t/>, etc. in (19) in terms of 8u, 8v, 8w using
(22), eqn (21) yields the equilibrium condition for small strain but accounting for arbitrary
rotation of infinitesimal volume elements.

Since in view of the first equation in (14) E depends on strain only and can be expressed in
terms of displacement using (22), it is possible to rewrite (17) in view of (18) as:
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Iv (~~ Su +~: Sv +:~ SW) dV = SW.

649

(23)

In this form the virtual work method yields three equations which permits one to solve for
u, v and wand the stresses can be ~alculated using (16). This reduces the study of the
equilibrium of a deformed body to the solution of (23) provided u, v and w satisfy the proper
boundary conditions.

The virtual work solution (23) is very useful for the applications of numerical methods,
where u, v, w nad consequently E and Ware expressed in terms of infinite series and the
undetermined coefficients of these series are found by taking arbitrary variations with respect
to these coefficients. This method will be used to obtain an approximate solution for large
plastic deformation of a plane pipe exposed to a couple at the end.

DISPLACEMENT FIELDS USED FOR THE SOLUTION

The solution is formulated by considering one half of the pipe shown in Fig. 5, which
resembles the section of P6 shown in Fig. 7, but without the dent due to local plastic
deformation.

The displacement field was formulated with respect to the original position of the pipe in the
following way: First the displacement u was constructed in the form of a series to permit the
cross section to change shape and position as indicated in Fig. 6 and to satisfy the proper
boundary conditions at the ends, i.e.

u = Ak (1 - cos k7Z) cos q, - en cos 2q, (cos 2nrZ +1)

au =0 when z =0az
au I

u = 0 - = 0 when z = -2', az

Fig. 5. Deformed. longitudinal shape of pipe used in analysis.

DEFORMED SHAPE AND
POSIT ION OF CROSS

SECTION)

ORIGINAL SHAPE
AND POSITION OF
CROSS SECTION

Fig. 6. Deformed. transverse normal section of pipe used in analysis.

(24)
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Fig. 7. Deformed cross sections of tested pipe P6.

Ak and C. are undertermined coefficients and summed over k and n, where n = 1,3,5, .... The
displacement v was selected such that for linear terms f~~ is due to bending only and thus
vanishes at the middle surface where r =: rm and

! (av _£.+!~) = 0 for any r,
2 ar r r acf>

i.e. in view of (22e) the linear part of fr~ is zero everywhere.
Thus

(
bTZ). 1 . ( 2n7TZ )

V = -Ak 1- cos -/- sm cf> +2C. sm 2cf> cos -/-+ 1

3 . ( 27TZ )-(r - rm ) 2r C. sm 2cf> cos -/-+ 1

av
az = 0 when Z = 0

av /
v =0,-=0 when z =-2'az

(25)

(26)

And finally the displacement w was constructed such that for linear terms only the shear strain
fzr vanishes, i.e. in view of (22d)

1 (au aw)- - +- = 0 for any r
2 az ar

and consequently

au
w=r az +F(cf>,z).

The function F(cf>, z) was chosen to represent w in the form

au
w =: r* az +.. '.

(27)

(28)

(29)
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where r* is the radius of the deformed cross section shown in Fig. 6 and accounts also for the
shifting of the neutral axis. It follows from that figure that the vector

( k7rz)r* =r+u+v- v, v =Ak l-cos-/-

and that the projection of r* onto the x-axis is

x* = r* cos cP* = r cos cP + u cos cP - v sin cP - v.

Approximating

r* cos cP "" r* cos cP*

it follows from (29), (31), (24), (27) that

w = - At [r cos cP - Cn ( cos 2cP cos cP + ~ sin 2cP sin cP ) (cos 2n/7T'Z + I)]k; sin k;Z

(
2n7T'z . 2n7T'Z)

-(r-rm ) Cn-/-cos2cPsm-/-.

(30)

(31)

(32)

(33)

w = 0 when Z= O.
The term (r- rm ) was chosen instead of r since it accounts as in shell theory for bending strain
due to curvature changes of the middle surface of the shell and does not interfere with (27); rm

denotes the mean radius of plane pipes.
The boundary conditions satisfied in (24), (26), (33) are those of the pipes tested, i.e. they

account for the reinforcements of the pipes at the ends as shown in Fig. I.
The strain energy density E for the virtual work principle defined in (23) was chosen in form

of the first equation in (14), i.e.

8U = Iv 8E dV = Iv 8 (lTyEe +~EOE/) dV = 8W. (34)

The solution of this equation is complicated by the first term of the integrant lTyEe representing
the rectangular area of E shown in the insert of Fig. 3, since it involves the radical Ee defined in
(11) which complicates both integration and variation. Equation (34) was solved using some
simplifications for Ee and also for E/. Firstly the simplifying assumptions made for E/ were:

(a) The strain-displacement relationship for E" in (22c) are disregarded in order to satisfy
the more important incompressible condition (6). This should not cause a significant error since
the term IT,,&" in (21) vanishes because of (7).

(b) Erz = Ere/> =0, (35)

i.e. as u, v and w were chosen to render the linear terms of Em Ere/> zero, the nonlinear terms
are neglected.

(c) Considering (24), (26), (22b),

r-rm (2n7T'Z)
Ee/>e/> = - ---;:r- 3Cn cos 2cP cos -/-+ 1 + ....

Consequently, except for the nonlinear terms Ec/><P vanishes on the middle surface. However in
view of (22a) and (33) the linear term awlaz in Ezz is not zero when r = Tm and would cause a
stress lTc/><P at the middle surface in view of (16). In order to insure that for the linear portion of
the solution

lTe/>e/> = 0 when r = rm (36)
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1 aw u 1 av
EcPcP =---(r = rm )+-+--+···.

2 az r r arj>
(37)

Under assumptions (aHc) it follows in view of (11) that

This will be further approximated for the radical, i.e.

(38)

(d)
(39)

for the term ayEe appearing in (34). This last assumption is made to obtain a manageable
solution. By rechecking Ee after solutions were obtained the error did not exceed 10% which is
mainly due to (37). It should be noted that a 10% error in (39) due to neglecting E~", and E;",

causes a much larger error if the same terms are neglected in (38).
In view of the assumption shown in (39) it was necessary to express ay as a double series

such that terms in the linear portion of Ezz did not drop out on integration. Thus, ay was
replaced by

_ ( '7TZ 21TZ 31TZ 41TZ)
ay = ay 1.73 cos T - 1.1 cos -/-+0.46 cos -/- - 0.1 cos -/-

x (-cos rj> +~ cos 3rj> ) ;. (40)

E was calculated as indicated in (14) using the simplified expressions (38), (39) and condition
(40). Strains were then expressed in (14) in terms of displacements u, v, w employing (22) and
these displacements were rewritten using the series given in (24), (26) and (33). A variation of E
in this form with respect to AK and Cn resulted in a set of nonlinear equations of third order in
AK and Cn and a solution of these equations yielded three roots for each AK and Cn• This made
the determination of the minimum energy corresponding to each displacement close to
impossible using a computer. Consequently, it was decided to maintain third order terms for
AK and Cn only in (14), (i.e. in view of (22) products of linear and of linear with nonlinear strain
terms), which yielded a set of nonlinear, second order equations for AK and Cn after variations.
This procedure led to accurate predictions of experimental results.

The virtual work principle (34) was restricted by the condition that the bending moment BM
equals the moment M of the applied couple at the end, i.e.

BM = fx*azz dA = M (41)

where azz can be calculated in terms of u, v and w using (16) and (22). The restriction was
imposed at three sections using the method of Lagrangian multipliers in connection with (34).
The nonlinear, second order equations were solved using the computer program ZSYSTM. The
nonlinear equations which were solved are given in the Appendix.

DISCUSSION OF RESULIS

Sections of three deformed pipes P6, Ps and P7 are shown in Figs. 7, 9 and 11 respectively.
A comparison of theoretical solutions with experimental results is made for these pipes in Figs.
8, 10 and 12, which show that the theoretical bending couple-displacement curves are above the
corresponding experimental curves. This is partly due to the fact that the theoretical limit
couple

(42)
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24

23

Q 22
M

:!2
I

.5 21

'"~ 19
Z

'"al

THEORETICAL
CURVE EQU.

~EXPERIMENTAL CURVE
SEE FIG.

CE~ 18,000 in-Ib BC E -22,200in-lb
Cl,.· 19,400 in-Ib BCT ·23,300 in-Ib
BCT• BC T - (eL. - GEl· 21,900 In- Ib
OIT - 30 tiD" 6,1

1.0 20
DISPLACEMENT, in

3.0

Fig. 8. Comparison of theoretical with experimental load-displacement curves of pipe h

was used as the origin of the theoretical curves. CL is, in general, about 10% higher than the
experimental limit couple CE [12]. This is also evident from Fig. 2. It can be seen that
experimental and theoretical curves have about the same slope in Figs. 8, 10 and 12 and that the
differences in the experimental and theoretical plastic buckling couples, Le. the BCE and BCT,

are 5, 12 and 17% of BCE for P6, Pg and P7 respectively. If a theoretical plastic buckling couple

Fig. 9. Deformed cross section of tested pipe Pg•

55 Vol. IS. No. S-E
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80

Q

E 70
I
C

W
...J 60
"-
:0
0
U

THEORETICAL
CURVE Eau-

BeT

/-EXPERIMENTAL CuRVE
~...........,._/ SEE FIG

CE " 41,000 m-Ib BeE'" 66,300 m-Ib
CL"" 43,400 in-Ib BCT =74,650 In-Ib
BC~ = BCT-(CL-CE) "'72,250 rn-Ib
DIT=30 UD=22

0.2 0.4 0.6 O.B 10 12

DISPLACEMENT, In

Fig. 10. Comparison of theoretical with experimental load-displacement curves for pipe P•.

Fig. II. Deformed cross section of tested pipe P7•

BC} is used, which is adjusted for the difference in CE and CL as shown in these figures, the
above errors change to 1,9 and 13% respectively.

P g had an liD ratio of 2.2 and significant plastic deformations extended to the ends of this
rather short pipe such that the boundary condition for slope specified in (24) for the ends was
not satisfied. This is evident from Fig. 9. Consequently, the error for the plastic buckling couple
of P g is due to a violation of zero slope conditions at the ends.

The high percentage error for the buckling couple of P7 is due to significant elastic
deformations, which are neglected in this analysis. P7 had a diameter/thickness ratio of 50,
whereas for P6 and Pg this ratio was 30. It is evident from Figs. 11 and 13 that the buckling of
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IS

'" 17
Q

.Q

1 16

=

THEORETICAL
CURVE EQU.

EXPERIMENTAL CURVE
SEE FIG

CE:IE 13,500 in-lb BC E = 15,300 in-Ib
CL "" 14,000 in-Ib BC T '" 17,850 in-Ib
BCT=' BC T - (CL- CE ) = 17,350 in-Ib

D/T = 50 £/D= 3.7

IZL--O-L.Z--O'--.4--0--'.6--0L.S----'LO,----L,Z--'-----'-------'

DISPLACEMENT, in

Fig. 12. Comparison of theoretical with experimental load-displacement curves for pipe P7.

Fig. 13. Local elastic-plastic dent of pipe P7•

P7 was due to a local elastic-plastic snap-through rather than a plastic gross-deformation of
shape evident in Figs. 7 and 9 for P6 and Pg respectively. For these two pipes the bending
couple decreased gradually after buckling as indicated in Figs. 8 and 10 and the local dent
visible in Figs. 7 and 9 occurred after plastic gross-deformations of shape. The elastic-plastic
snap-through of P7 is also evident in Fig. 12 for two reasons: the bending couple decreases
rapidly after buckling and the experimental buckling couple BCE occurs at a considerably
smaller displacement than predicted theoretically. The behavior of P6 and Pg is quite different
in this respect as can be seen in Figs. 8 and 10. All theoretical curves tum towards the moment
axis after BCT was reached and consequently do not predict post-buckling behavior correctly,
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which is to be expected. It is also interesting to note, that because of this turn, a second couple
exists which corresponds to the displacement due to BeT. This duality of the solution is due to
the mathematical nonlinearity of the equations. The second couple has no physical meaning as
far as buckling is concerned since there is no perturbation in slope at that point.

The complexity of the strain energy indicates that a power law for the stress-strain
relationship as used in [2-4) for a one dimensional approach renders a three dimensional
solution hopelessly complicated because of integration anf variation. This is the main reason
the rigid, linearly hardening description was used in this work and with success as indicated in
Figs. 8 and 10.
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APPENDIX
Considering (34), (14), (38)-(40), (24). (26), (33) and assumptions (aHd) it follows that:

f - { (R/ - R,l ) 11'2 2 [ I
U E dV - 4 12 I I~l ~ .f Si~kk 1T8 li lTV - k}

x . 1TV - k) + 1 . lTV +k}]
sm-2- lTV + k} . sm-2-

TRm ~ "'.f '" 2 11'2 [ 1 . 1TV - 2n + k)
+-8-· "" L..i sJjC.Akk -I 2 (j -2 +k)' sm 2

1"".3 J n=I,3 7T n

+ 1 . lTv+2n-k} 1 . lTv-2n-k}
21Tv+2n-k}'sm 2 +21Tv-2n-k)'sm 2

+ 1 . lTV + 2n + k} 1 . 1TV - k} 1 . 1TV + k}]
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Oi; is the Kronecker delta, i, j, k, n, m, q are summation indices and S;; are the integrated terms of iiy shown in eqn (40), i.e.

The expansion for (41) is

fRQ i" [ ~ ( 2nTrz )M = 2 r cos ¢ - ~ C. cos -/-+ I cos 2¢ cos ¢
R; 0 n-l.3

-~.?',3 C. (cos 2nrZ + I) sin 2¢ sin ¢ ] [i~3 f Si; cos j7Z
cos i¢ +~ Eo(2fzz +f#) ] r dr d¢

which after integration gives

. kTrz ~ ~ 2 kTrZ ( 2nTrz ) I}x SIn -/- - •~,3 "2 C.Akk cos -/- cos -/-+ 1

ignoring terms of the order of C/ or smaller.
The work 0W done by the allplied couple in eqn (17) is given by Mo8, where 8 denotes the slope at the ends of the pipe

shown in Fig. 5 and is given in view of Fig. 6 by:

(iiUI8=arctg -
iiz z~(I/2)

The above equation is replaced with the first 2 terms of the series expansion for 181 < I, rendering the work done;

which makes the derivative with respect to coefficients simpler. The computer program shown here is for nonlinear strain
and solves for the system of equations;
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F,=BM

Fn=BM

where F" F2, • •• Fq are the constraint equations for constant bending moment forced at q cross sections (which was 3 for
this study) and '\','\20" .,'\q are the Lagrange multipliers.


